Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

Identifieur interne : 000486 ( Main/Exploration ); précédent : 000485; suivant : 000487

β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.

Auteurs : Keyvan Karimi Galougahi [Australie] ; Chia-Chi Liu [Australie] ; Alvaro Garcia [Australie] ; Natasha A. Fry [Australie] ; Elisha J. Hamilton [Australie] ; Gemma A. Figtree [Australie] ; Helge H. Rasmussen [Australie]

Source :

RBID : pubmed:26063704

Descripteurs français

English descriptors

Abstract

Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes.

DOI: 10.1152/ajpcell.00071.2015
PubMed: 26063704
PubMed Central: PMC4556897


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.</title>
<author>
<name sortKey="Karimi Galougahi, Keyvan" sort="Karimi Galougahi, Keyvan" uniqKey="Karimi Galougahi K" first="Keyvan" last="Karimi Galougahi">Keyvan Karimi Galougahi</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</nlm:affiliation>
<orgName type="university">Université de Sydney</orgName>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</nlm:affiliation>
<orgName type="university">Université de Sydney</orgName>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fry, Natasha A" sort="Fry, Natasha A" uniqKey="Fry N" first="Natasha A" last="Fry">Natasha A. Fry</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</nlm:affiliation>
<orgName type="university">Université de Sydney</orgName>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</nlm:affiliation>
<orgName type="university">Université de Sydney</orgName>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia helge.rasmussen@sydney.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26063704</idno>
<idno type="pmid">26063704</idno>
<idno type="doi">10.1152/ajpcell.00071.2015</idno>
<idno type="pmc">PMC4556897</idno>
<idno type="wicri:Area/Main/Corpus">000525</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000525</idno>
<idno type="wicri:Area/Main/Curation">000525</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000525</idno>
<idno type="wicri:Area/Main/Exploration">000525</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.</title>
<author>
<name sortKey="Karimi Galougahi, Keyvan" sort="Karimi Galougahi, Keyvan" uniqKey="Karimi Galougahi K" first="Keyvan" last="Karimi Galougahi">Keyvan Karimi Galougahi</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</nlm:affiliation>
<orgName type="university">Université de Sydney</orgName>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</nlm:affiliation>
<orgName type="university">Université de Sydney</orgName>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fry, Natasha A" sort="Fry, Natasha A" uniqKey="Fry N" first="Natasha A" last="Fry">Natasha A. Fry</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</nlm:affiliation>
<orgName type="university">Université de Sydney</orgName>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</nlm:affiliation>
<orgName type="university">Université de Sydney</orgName>
<country>Australie</country>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
<author>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
<affiliation wicri:level="4">
<nlm:affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia helge.rasmussen@sydney.edu.au.</nlm:affiliation>
<country wicri:rule="url">Australie</country>
<wicri:regionArea>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
<orgName type="university">Université de Sydney</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Cell physiology</title>
<idno type="eISSN">1522-1563</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adrenergic beta-3 Receptor Agonists (pharmacology)</term>
<term>Adrenergic beta-3 Receptor Agonists (therapeutic use)</term>
<term>Amino Acid Sequence (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Blood Glucose (drug effects)</term>
<term>Blood Glucose (metabolism)</term>
<term>Dioxoles (pharmacology)</term>
<term>Dioxoles (therapeutic use)</term>
<term>Hyperglycemia (drug therapy)</term>
<term>Hyperglycemia (metabolism)</term>
<term>Male (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Oxidative Stress (physiology)</term>
<term>Rabbits (MeSH)</term>
<term>Receptor, Insulin (antagonists & inhibitors)</term>
<term>Receptors, Adrenergic, beta-3 (metabolism)</term>
<term>Sodium-Potassium-Exchanging ATPase (antagonists & inhibitors)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agonistes des récepteurs bêta-3 adrénergiques (pharmacologie)</term>
<term>Agonistes des récepteurs bêta-3 adrénergiques (usage thérapeutique)</term>
<term>Animaux (MeSH)</term>
<term>Dioxoles (pharmacologie)</term>
<term>Dioxoles (usage thérapeutique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glycémie (effets des médicaments et des substances chimiques)</term>
<term>Glycémie (métabolisme)</term>
<term>Hyperglycémie (métabolisme)</term>
<term>Hyperglycémie (traitement médicamenteux)</term>
<term>Lapins (MeSH)</term>
<term>Mâle (MeSH)</term>
<term>Récepteur à l'insuline (antagonistes et inhibiteurs)</term>
<term>Récepteurs bêta-3 adrénergiques (métabolisme)</term>
<term>Sodium-Potassium-Exchanging ATPase (antagonistes et inhibiteurs)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Stress oxydatif (physiologie)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Receptor, Insulin</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Blood Glucose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Blood Glucose</term>
<term>Receptors, Adrenergic, beta-3</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Adrenergic beta-3 Receptor Agonists</term>
<term>Dioxoles</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="therapeutic use" xml:lang="en">
<term>Adrenergic beta-3 Receptor Agonists</term>
<term>Dioxoles</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Récepteur à l'insuline</term>
<term>Sodium-Potassium-Exchanging ATPase</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Hyperglycemia</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Glycémie</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Hyperglycemia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycémie</term>
<term>Hyperglycémie</term>
<term>Récepteurs bêta-3 adrénergiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Agonistes des récepteurs bêta-3 adrénergiques</term>
<term>Dioxoles</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Hyperglycémie</term>
</keywords>
<keywords scheme="MESH" qualifier="usage thérapeutique" xml:lang="fr">
<term>Agonistes des récepteurs bêta-3 adrénergiques</term>
<term>Dioxoles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Male</term>
<term>Molecular Sequence Data</term>
<term>Rabbits</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Données de séquences moléculaires</term>
<term>Lapins</term>
<term>Mâle</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26063704</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1522-1563</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>309</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Cell physiology</Title>
<ISOAbbreviation>Am J Physiol Cell Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.</ArticleTitle>
<Pagination>
<MedlinePgn>C286-95</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1152/ajpcell.00071.2015</ELocationID>
<Abstract>
<AbstractText>Dysregulated nitric oxide (NO)- and superoxide (O2 (·-))-dependent signaling contributes to the pathobiology of diabetes-induced cardiovascular complications. We examined if stimulation of β3-adrenergic receptors (β3-ARs), coupled to endothelial NO synthase (eNOS) activation, relieves oxidative inhibition of eNOS and the Na(+)-K(+) pump induced by hyperglycemia. Hyperglycemia was established in male New Zealand White rabbits by infusion of the insulin receptor antagonist S961 for 7 days. Hyperglycemia increased tissue and blood indexes of oxidative stress. It induced glutathionylation of the Na(+)-K(+) pump β1-subunit in cardiac myocytes, an oxidative modification causing pump inhibition, and reduced the electrogenic pump current in voltage-clamped myocytes. Hyperglycemia also increased glutathionylation of eNOS, which causes its uncoupling, and increased coimmunoprecipitation of cytosolic p47(phox) and membranous p22(phox) NADPH oxidase subunits, consistent with NADPH oxidase activation. Blocking translocation of p47(phox) to p22(phox) with the gp91ds-tat peptide in cardiac myocytes ex vivo abolished the hyperglycemia-induced increase in glutathionylation of the Na(+)-K(+) pump β1-subunit and decrease in pump current. In vivo treatment with the β3-AR agonist CL316243 for 3 days eliminated the increase in indexes of oxidative stress, decreased coimmunoprecipitation of p22(phox) with p47(phox), abolished the hyperglycemia-induced increase in glutathionylation of eNOS and the Na(+)-K(+) pump β1-subunit, and abolished the decrease in pump current. CL316243 also increased coimmunoprecipitation of glutaredoxin-1 with the Na(+)-K(+) pump β1-subunit, which may reflect facilitation of deglutathionylation. In vivo β3-AR activation relieves oxidative inhibition of key cardiac myocyte proteins in hyperglycemia and may be effective in targeting the deleterious cardiac effects of diabetes. </AbstractText>
<CopyrightInformation>Copyright © 2015 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Karimi Galougahi</LastName>
<ForeName>Keyvan</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Chia-Chi</ForeName>
<Initials>CC</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garcia</LastName>
<ForeName>Alvaro</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fry</LastName>
<ForeName>Natasha A</ForeName>
<Initials>NA</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hamilton</LastName>
<ForeName>Elisha J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Figtree</LastName>
<ForeName>Gemma A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rasmussen</LastName>
<ForeName>Helge H</ForeName>
<Initials>HH</Initials>
<AffiliationInfo>
<Affiliation>North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; and Department of Cardiology, Royal North Shore Hospital, Sydney, Australia helge.rasmussen@sydney.edu.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Cell Physiol</MedlineTA>
<NlmUniqueID>100901225</NlmUniqueID>
<ISSNLinking>0363-6143</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D058667">Adrenergic beta-3 Receptor Agonists</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001786">Blood Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004149">Dioxoles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022702">Receptors, Adrenergic, beta-3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>138908-40-4</RegistryNumber>
<NameOfSubstance UI="C076126">disodium (R,R)-5-(2-((2-(3-chlorophenyl)-2-hydroxyethyl)-amino)propyl)-1,3-benzodioxole-2,3-dicarboxylate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D011972">Receptor, Insulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.2.2.13</RegistryNumber>
<NameOfSubstance UI="D000254">Sodium-Potassium-Exchanging ATPase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058667" MajorTopicYN="N">Adrenergic beta-3 Receptor Agonists</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="Y">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001786" MajorTopicYN="N">Blood Glucose</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004149" MajorTopicYN="N">Dioxoles</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000627" MajorTopicYN="N">therapeutic use</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006943" MajorTopicYN="N">Hyperglycemia</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008297" MajorTopicYN="N">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011817" MajorTopicYN="N">Rabbits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011972" MajorTopicYN="N">Receptor, Insulin</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022702" MajorTopicYN="N">Receptors, Adrenergic, beta-3</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000254" MajorTopicYN="N">Sodium-Potassium-Exchanging ATPase</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Na+-K+ pump</Keyword>
<Keyword MajorTopicYN="N">diabetes</Keyword>
<Keyword MajorTopicYN="N">endothelial nitric oxide synthase</Keyword>
<Keyword MajorTopicYN="N">glutathionylation</Keyword>
<Keyword MajorTopicYN="N">hyperglycemia</Keyword>
<Keyword MajorTopicYN="N">β3-adrenergic receptors</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26063704</ArticleId>
<ArticleId IdType="pii">ajpcell.00071.2015</ArticleId>
<ArticleId IdType="doi">10.1152/ajpcell.00071.2015</ArticleId>
<ArticleId IdType="pmc">PMC4556897</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Diabetes. 2000 Dec;49(12):2108-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2009 Apr;296(4):C693-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 20;276(29):26942-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11342546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Epidemiol. 2001 Aug 15;154(4):348-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11495858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2002 Apr 9;105(14):1656-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11940543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Care. 2009 May;32(5):932-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19228869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharmacol Exp Ther. 2009 Jun;329(3):850-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19293389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2009 Jul 17;105(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Investig Drugs. 2009 Sep;10(9):955-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19705338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2009 Nov;47(5):576-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19766235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Endocr Metab Disord. 2010 Mar;11(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20180026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Heart J. 2010 Apr;31(7):824-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 30;285(18):13712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2010 Jun;48(6):1088-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20184889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2010 Dec 21;122(25):2699-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 23;468(7327):1115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 May 15;14(10):1769-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 May 27;286(21):18562-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2011 Oct;60(10):2608-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21844097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heart Rhythm. 2011 Nov;8(11):1804-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21699870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2012 Jun;166(3):877-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22352879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2012 May 11;110(10):1364-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22581922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Coll Cardiol. 2012 May 29;59(22):1979-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22624839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cardiovasc Med. 2012 May;22(4):83-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23040838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2013 Jun 15;591(12):2999-3015</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23587884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2013 Aug;61:20-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23727097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2013 Aug;61:94-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23727392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2014 Jan 28;129(4):451-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24190960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2015 Aug 15;309(4):C239-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26084308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2002 Aug 23;91(4):300-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12193462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2003 Mar 15;57(4):874-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2003 Mar 15;57(4):887-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12650867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1995 Feb;268(2 Pt 1):C366-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7864075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2006 Mar 17;98(5):596-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Discov Today. 2006 Jun;11(11-12):524-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2006 Oct 3;114(14):1531-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17015805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2007 Mar;292(3):C1070-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17020934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heart Fail Rev. 2007 Mar;12(1):58-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17364227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2007 Sep 12;298(10):1189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(1):8-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18193017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2008 Feb;294(2):C572-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18057120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2008 Apr;294(4):C1067-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Nov 14;376(2):380-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18782558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2009 Apr 1;82(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19179352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Physiol. 2009 Apr;94(4):400-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2001 Mar 27;103(12):1649-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11273992</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
</region>
<settlement>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Sydney</li>
</orgName>
</list>
<tree>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Karimi Galougahi, Keyvan" sort="Karimi Galougahi, Keyvan" uniqKey="Karimi Galougahi K" first="Keyvan" last="Karimi Galougahi">Keyvan Karimi Galougahi</name>
</region>
<name sortKey="Figtree, Gemma A" sort="Figtree, Gemma A" uniqKey="Figtree G" first="Gemma A" last="Figtree">Gemma A. Figtree</name>
<name sortKey="Fry, Natasha A" sort="Fry, Natasha A" uniqKey="Fry N" first="Natasha A" last="Fry">Natasha A. Fry</name>
<name sortKey="Garcia, Alvaro" sort="Garcia, Alvaro" uniqKey="Garcia A" first="Alvaro" last="Garcia">Alvaro Garcia</name>
<name sortKey="Hamilton, Elisha J" sort="Hamilton, Elisha J" uniqKey="Hamilton E" first="Elisha J" last="Hamilton">Elisha J. Hamilton</name>
<name sortKey="Liu, Chia Chi" sort="Liu, Chia Chi" uniqKey="Liu C" first="Chia-Chi" last="Liu">Chia-Chi Liu</name>
<name sortKey="Rasmussen, Helge H" sort="Rasmussen, Helge H" uniqKey="Rasmussen H" first="Helge H" last="Rasmussen">Helge H. Rasmussen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000486 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000486 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26063704
   |texte=   β3-Adrenoceptor activation relieves oxidative inhibition of the cardiac Na+-K+ pump in hyperglycemia induced by insulin receptor blockade.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26063704" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020